Part Number Hot Search : 
Q208I BD5225G EM91810A AD9995 AD9995 AD711 5251B MVCO1749
Product Description
Full Text Search
 

To Download DMV16 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 (R)
DMV series
DAMPER + MODULATION DIODE FOR VIDEO
MAIN PRODUCT CHARACTERISTICS MODUL IF(AV) VRRM trr VF (max) 3A&6A 600 V 50 ns 1.5 V DAMPER 5A&6A 1500 V 135 ns 1.35 V
DAMPER
MODULATION
1
2
3
FEATURES AND BENEFITS
1
2
3
FULL KIT IN ONE PACKAGE HIGH BREAKDOWN VOLTAGE CAPABILITY VERY FAST RECOVERY DIODE SPECIFIED TURN ON SWITCHING CHARACTERISTICS LOW STATIC AND PEAK FORWARD VOLTAGE DROP FOR LOW DISSIPATION INSULATED VERSION: Insulated voltage = 2500 VRMS Capacitance = 7 pF PLANAR TECHNOLOGY ALLOWING HIGH QUALITY AND BEST ELECTRICAL CHARACTERISTICS OUTSTANDING PERFORMANCE OF WELL PROVEN DTV AS DAMPER AND TURBOSWITCHTM AS MODULATION
Insulated TO-220AB (Bending option F5 available) DESCRIPTION High voltage semiconductor especially designed for horizontal deflection stage in standard and high resolution video display with E/W correction. The insulated TO-220AB package includes both the DAMPER diode and the MODULATION diode. Assembled on automated line, it offers excellent insulating and dissipating characteristics, thanks to the internal ceramic insulation layer.
ABSOLUTE RATINGS (limiting values, per diode) Symbol VRRM IFSM Parameter Repetitive peak reverse voltage Surge non repetitive forward current tp = 10 ms sinusoidal DMV16 DMV32 DMV56 Tstg Tj Storage temperature range Maximum operating junction temperature 600 50 60 60 Value MODUL DAMPER 1500 50 75 80 C V A Unit
- 40 to + 150 150
TURBOSWITCH is a trademark of STMicroelectronics
August 1999 - Ed: 2A
1/9
DMV series
THERMAL RESISTANCES Symbol Rth(j-c) Rth(j-c) Rth(c) Rth(j-c) Parameter Damper junction to case Modulation junction to case Coupling Total as per full IF(AV) maximum ratings Value DMV16 DMV32 DMV56 5.3 6.5 0.2 6.0 4.8 5.3 0.2 5.1 3.6 5.3 0.2 4.5 Unit C/W
STATIC ELECTRICAL CHARACTERISTICS OF THE DAMPER DIODES Value Symbol Parameter Test conditions Tj = 25C Tj = 125C Unit
Typ. Max. Typ. Max. VF * Forward voltage drop IF = 5 A IF = 6 A IF = 6 A IR ** Reverse leakage current VR = VRRM DMV16 DMV32 DMV56 DMV16 DMV32 DMV56
Pulse test : * tp = 380 s, < 2% ** tp = 5 ms, < 2%
1.6 1.5 1.8 60 100 100
1.0 1.1 1.1 100 100 100
1.5 1.35 1.5 500 1000 1000
V
A
To evaluate the maximum conduction losses of the DAMPER diode use the following equations : DMV16: P = 1.14 x IF(AV) + 0.072 x IF2(RMS) DMV32: P = 1.069 x IF(AV) + 0.047 x IF2(RMS) DMV56: P = 1.15 x IF(AV) + 0.059 x IF2(RMS) STATIC ELECTRICAL CHARACTERISTICS OF THE MODULATION DIODE Value Symbol VF * Parameter Forward voltage drop Test conditions IF = 3A IF = 5A IF = 5A IR ** Reverse leakage current VR = 480V DMV16 DMV32 DMV56 DMV16 DMV32 DMV56
Pulse test : * tp = 380 s, < 2% ** tp = 5 ms, < 2%
Tj = 25C Typ. Max. 1.4 1.75 1.75 20 100 100
Tj = 125C Typ. 1 1.2 1.2 150 600 600 Max. 1.3 1.5 1.5 500 2000 2000
Unit V
A
To evaluate the maximum conduction losses of the MODULATION diode use the following equations : DMV16: P = 1.06 x IF(AV) + 0.08x IF2(RMS) DMV32: P = 1.15 x IF(AV) + 0.07 x IF2(RMS) DMV56: P = 1.15 x IF(AV) + 0.07 x IF2(RMS)
2/9
(R)
DMV series
RECOVERY CHARACTERISTICS OF THE DAMPER DIODE Symbol trr Parameter Reverse recovery time IF = 100mA IR = 100mA IRR = 10mA IF = 1A dIF/dt = -50A/s VR = 30V Test conditions Tj = 25C DMV16 DMV32 Tj = 25C DMV56 DMV16 DMV32 DMV56 Value Typ. 1500 850 750 200 130 110 300 175 135 ns Max. Unit ns
trr
Reverse recovery time
RECOVERY CHARACTERISTICS OF THE MODULATION DIODE Symbol trr Parameter Reverse recovery time IF = 100mA IR = 100mA IRR = 10mA IF = 1A dIF/dt = -50A/s VR = 30V Test conditions Tj = 25C DMV16 DMV32 DMV56 Tj = 25C DMV16 DMV32 DMV56 Value Typ. 210 110 110 Max. 650 350 350 95 50 50 ns Unit ns
trr
Reverse recovery time
TURN-ON SWITCHING CHARACTERISTICS OF THE DAMPER DIODE Symbol tfr Parameter Forward recovery time Test conditions IF = 6A dIF/dt = 80A/s VFR = 3V IF = 6A dIF/dt = 80A/s Tj = 100C DMV16 DMV32 DMV56 Tj = 100C DMV16 DMV32 DMV56 TURN-ON SWITCHING CHARACTERISTICS OF THE MODULATION DIODE Symbol tfr Parameter Forward recovery time Test conditions IF = 3A dIF/dt = 80A/s VFR = 3V IF = 5A dIF/dt = 80A/s VFR = 3V VFP Peak forward voltage IF = 3A dIF/dt = 80A/s IF = 5A dIF/dt = 80A/s Tj = 100C Tj = 100C DMV16 Value Typ. Max. 500 Unit ns Value Typ. 350 570 350 25 21 19 34 28 26 V Max. Unit ns
VFP
Peak forward voltage
DMV32 DMV56 DMV16 DMV32 DMV56
300 300 8 10 10
3/9
V
(R)
DMV series
ORDERING INFORMATION
DMVxx / F5
LEAD BENDING (OPTION) DAMPER AND MODULATION DIODES FOR VIDEO
Fig. 1-1: Power dissipation versus peak forward current (triangular waveform, =0.45) (damper diode.)
PF(av)(W) 2.0 1.8 1.6 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0.0
DMV16 DMV56 DMV32
Fig. 1-2: Power dissipation versus peak forward current (triangular waveform, =0.45) (modulation diode)
PF(av)(W) 2.0 1.8 1.6 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0.0
DMV32/DMV56
DMV16
Ip(A) 0 1 2 3 4 5 6
Ip(A)
0 1 2 3 4 5 6
Fig. 2-1: Average forward current versus ambient temperature (damper diode).
IF(av)(A) 7 6 5 4
DMV32 DMV16
Fig. 2-2: Average forward current versus ambient temperature (modulation diode).
IF(av)(A) 6 5
DMV32/DMV56
DMV56
4 3
DMV16
3 2 1 0 0
=tp/T
T
Rth(j-a)=Rth(j-c)
2
T
Rth(j-a)=Rth(j-c)
1
tp
Tamb(C) 50 75 100 125 150
25
0
=tp/T
tp
Tamb(C)
50 75 100 125 150
0
25
4/9
(R)
DMV series
Fig. 3-1: Forward voltage drop versus forward current (damper diode) DMV16.
IFM(A) 20.0 10.0
Typical Tj=125C
Fig. 3-2: Forward voltage drop versus forward current (damper diode)DMV32.
IFM(A) 50.0
Typical Tj=125C
10.0
Maximum Tj=125C
Maximum Tj=125C
Maximum Tj=25C
1.0
Maximum Tj=25C
1.0
VFM(V) 0.1 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2
VFM(V) 0.1 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8
Fig. 3-3: Forward voltage drop versus forward current (damper diode)DMV56.
IFM(A) 50.0
Typical Tj=125C
Fig. 3-4: Forward voltage drop versus forward current (modulation diode)DMV16.
IFM(A)
20.0 10.0
10.0
Maximum Tj=125C Maximum Tj=25C
Typical Tj=125C
Maximum Tj=125C
1.0
1.0
Maximum Tj=25C
VFM(V) 0.1 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8
VFM(V) 0.1 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2
Fig. 3-5: Forward voltage drop versus forward current (modulation diode)DMV32 and DMV56.
IFM(A)
Fig. 4: Relative variation of thermal impedance junction to case versus pulse duration.
K=[Zth(j-c)/Rth(j-c)] 1.0
= 0.5
20.0 10.0
Typical Tj=125C
0.5
Maximum Tj=125C
= 0.2 = 0.1
1.0
Maximum Tj=25C
0.2
Single pulse
T
VFM(V) 0.1 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2
tp(s) 0.1 1E-3 1E-2 1E-1
=tp/T
tp
1E+0
(R)
5/9
DMV series
Fig. 5-1: Non repetitive surge peak forward current versus overload duration (damper diode).
IM(A) 45 40 35 30 25 20 15 10 IM 5 0 1E-3
Fig. 5-2: Non repetitive surge peak forward current versus overload duration (modulation diode).
IM(A) 40
Tc=100C
Tc=100C
35
DMV56
30 25
DMV32
DMV32/DMV56
20 15 10
IM t
DMV16
DMV16
t
=0.5
t(s) 1E-2 1E-1 1E+0
5 0 1E-3
=0.5
t(s) 1E-2 1E-1 1E+0
Fig. 6-1: Reverse recovery charges versus dIF/dt (damper diode).
Qrr(C) 2.4 IF=IF(av) 2.2 90% confidence Tj=125C 2.0 1.8 1.6 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0.0 0.1 0.2
Fig. 6-2: Reverse recovery charges versus dIF/dt (modulation diode).
Qrr(nC) 500 IF=IF(av) 90% confidence 450 Tj=125C 400 350 300 250 200 150 100 50 0 0.1
DMV16
DMV16
DMV32
DMV56
DMV32/DMV56
dIF/dt(A/s) 0.5 1.0 2.0 5.0
1.0
dIF/dt(A/s) 10.0
50.0
Fig. 7-1: Reverse recovery current versus dIF/dt (damper diode).
IRM(A) 3.0 2.5 2.0 1.5
DMV56 DMV32 IF=IF(av) 90% confidence Tj=125C DMV16
Fig. 7-2: Reverse recovery current versus dIF/dt (modulation diode).
IRM(A) 10 IF=IF(av) 9 90% confidence Tj=125C 8 7 6 5 4 3 2 1 0 0.1
DMV16
1.0 0.5 0.0 0.1
dIF/dt(A/s)
0.2 0.5 1.0 2.0 5.0
DMV32/DMV56
1.0 dIF/dt(A/s) 10.0
100.0
6/9
(R)
DMV series
Fig. 8-1: Transient peak forward voltage versus dIF/dt (damper diode).
VFP(V) 50 45 40 35 30 25 20 15 10 5 0
IF=IF(av) 90% confidence Tj=125C DMV32 DMV56 DMV16
Fig. 8-2: Transient peak forward voltage versus dIF/dt (modulation diode).
VFP(V) 20 18 16 14 12 10 8 6 4 2 0
IF=IF(av) 90% confidence Tj=125C DMV32/DMV56
DMV16
0
20
40
60
dIF/dt(A/s) 80 100
120
140
0
20
40
60
80
dIF/dt(A/s) 100 120 140 160 180 200
Fig. 9-1: Forward recovery time (damper diode).
tfr(ns) 700 650 600 550 500 450 400 350 300 250 200
versus dIF/dt
Fig. 9-2: Forward recovery time versus dIF/dt (modulation diode).
tfr(ns) 400
IF=IF(av) 90% confidence Tj=125C Vfr=3V
350 300 250 200
DMV16
IF=IF(av) 90% confidence Tj=125C Vfr=1.5V
DMV16/DMV32/DMV56
150 100
DMV32/DMV56
dIF/dt(A/s)
0 20 40 60 80 100 120 140
50 0 0 20 40 60
dIF/dt(A/s)
80 100 120 140 160 180 200
Fig. 10: Dynamic parameters versus junction temperature (damper & modulation diodes).
VFP,IRM,Qrr[Tj] / VFP,IRM,Qrr[Tj=125C] 1.2 1.0 0.8 0.6 0.4 0.2 0.0 0
IRM
Fig. 11: Junction capacitance versus reverse voltage applied (typical values).
C(pF) 100
DMV16 Damper diodes DMV32 DMV56 Tj=25C F=1MHz
10
DMV16 DMV32/DMV56
VFP
Qrr
Modulation diodes
Tj(C) 20 40 60 80 100 120 140
VR(V) 1 1 10 100 200
(R)
7/9
DMV series
PACKAGE MECHANICAL DATA TO-220AB F5 OPTION DIMENSIONS REF. A
B b2
Millimeters Min. 15.20 24.16 1.65 10.00 0.61 1.23 4.40 0.49 2.40 2.40 6.20 3.75 2.65 1.14 1.14 15.80 2.92 Max. 15.90 26.90 2.41 10.40 0.88 1.32 4.60 0.70 2.72 2.70 6.60 3.85 2.95 1.70 1.70 16.80 3.30
Inches Min. 0.598 0.951 0.064 0.393 0.024 0.048 0.173 0.019 0.094 0.094 0.244 0.147 0.104 0.044 0.044 0.622 0.114 Max. 0.625 1.059 0.094 0.409 0.034 0.051 0.181 0.027 0.107 0.106 0.259 0.151 0.116 0.066 0.066 0.661 0.129
a1
C
a3 B b1 b2 C c1 c2
c2 R2 a3 R1
L F
OI
A l4
a1
l3 l2
e F I L
c2 b1 e M1
c1
I2 l3 l4 M1 R1 R2
16.40 typ. 1.40 typ. 1.40 typ.
0.645 typ. 0.055 typ. 0.055 typ.
PRINTED CIRCUIT LAYOUT FOR F5 LAYOUT
cooling method: by conduction (c) Recommended torque value: 0.8 m.N. Maximum torque value: 1 m.N.
1mm
3.1mm 2.2mm
2.54mm
8/9
(R)
DMV series
PACKAGE MECHANICAL DATA TO-220AB DIMENSIONS REF.
B C
Millimeters Min. Typ. Max. Min. 15.90 0.598 3.75 13.00 10.00 0.61 1.23 4.40 0.49 2.40 2.40 6.20 3.75 2.65 1.14 1.14 2.60 14.00 0.511 10.40 0.393 0.88 0.024 1.32 0.048 4.60 0.173 0.70 0.019 2.72 0.094 2.70 0.094 6.60 0.244 3.85 0.147 2.95 0.104 1.70 0.044 1.70 0.044 15.20
Inches Typ. Max. 0.625 0.147 0.551 0.409 0.034 0.051 0.181 0.027 0.107 0.106 0.259 0.151 0.116 0.066 0.066 0.102
b2
A
L F I A
a1 a2 B b1 b2 C c1
l4
a1
c2
c2 e F I I4 L l2 l3 M
l3
l2 a2
15.80 16.40 16.80 0.622 0.646 0.661
b1 e
M c1
cooling method: by conduction (c) Recommended torque value: 0.8 m.N. Maximum torque value: 1 m.N. Type DMV16 DMV16/F5 DMV32 DMV32/F5 DMV56 DMV56/F5 Marking DMV16 DMV32 DMV56 Package TO-220AB TO-220AB TO-220AB Weight 2.2 g. 2.2 g. 2.2 g. Base qty 50 50 50 Delivery mode Tube Tube Tube
Epoxy meets UL94, V0
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.
The ST logo is a registered trademark of STMicroelectronics (c) 1999 STMicroelectronics - Printed in Italy - All rights reserved. STMicroelectronics GROUP OF COMPANIES Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - U.S.A. http://www.st.com
(R)
9/9


▲Up To Search▲   

 
Price & Availability of DMV16

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X